Detection of metabolomic changes in beetroot tissues under the influence of glyphosate
pdf

Supplementary Files

Supporting information

Keywords

metabolomics, metabolites, beetroot, mass spectrometry

Abstract

Environmental pollution, including herbicides such as glyphosate, remains a global problem. This publication describes research examining the effects of glyphosate and sodium dodecyl sulfate on the metabolome of beetroot. Ultra-high performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS) and laser ablation remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) analyses were performed. The results, along with statistical analysis, revealed that glyphosate and sodium dodecyl sulfate cause lower concentrations of many metabolites in the plant. It was also demonstrated that roots exhibit greater metabolic changes than stems.

https://doi.org/10.7862/rc.2025.5
pdf

References

J. Awewomom et al., “Addressing global environmental pollution using environmental control techniques: a focus on environmental policy and preventive environmental management,” Discov Environ, vol. 2, no. 1, p. 8, Feb. 2024, doi: 10.1007/s44274-024-00033-5.

R. A. Mir, A. G. Mantoo, Z. A. Sofi, D. A. Bhat, A. Bashir, and S. Bashir, “Types of Environmental Pollution and Its Effects on the Environment and Society,” in Geospatial Analytics for Environmental Pollution Modeling: Analysis, Control and Management, F. Mushtaq, M. Farooq, A. B. Mukherjee, and M. Ghosh Nee Lala, Eds., Cham: Springer Nature Switzerland, 2023, pp. 1–31. doi: 10.1007/978-3-031-45300-7_1.

E. Wołejko, A. Jabłońska-Trypuć, U. Wydro, A. Butarewicz, and B. Łozowicka, “Soil biological activity as an indicator of soil pollution with pesticides – A review,” Applied Soil Ecology, vol. 147, p. 103356, Mar. 2020, doi: 10.1016/j.apsoil.2019.09.006.

E. C. Brevik et al., “Soil and Human Health: Current Status and Future Needs,” Air, Soil and Water Research, vol. 13, p. 1178622120934441, Jan. 2020, doi: 10.1177/1178622120934441.

P. Nayak and H. Solanki, “PESTICIDES AND INDIAN AGRICULTURE- A REVIEW,” Int. J. Res. Granthaalayah, vol. 9, no. 5, pp. 250–263, Jun. 2021, doi: 10.29121/granthaalayah.v9.i5.2021.3930.

R. Mesnage, A. Székács, and J. G. Zaller, “1 - Herbicides: Brief history, agricultural use, and potential alternatives for weed control,” in Herbicides, R. Mesnage and J. G. Zaller, Eds., in Emerging Issues in Analytical Chemistry. , Elsevier, 2021, pp. 1–20. doi: 10.1016/B978-0-12-823674-1.00002-X.

H. J. Beckie, K. C. Flower, and M. B. Ashworth, “Farming without Glyphosate?,” Plants, vol. 9, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/plants9010096.

R. D. Sammons and T. A. Gaines, “Glyphosate resistance: state of knowledge,” Pest Management Science, vol. 70, no. 9, pp. 1367–1377, 2014, doi: 10.1002/ps.3743.

A. Zulet-González, M. Barco-Antoñanzas, M. Gil-Monreal, M. Royuela, and A. Zabalza, “Increased Glyphosate-Induced Gene Expression in the Shikimate Pathway Is Abolished in the Presence of Aromatic Amino Acids and Mimicked by Shikimate,” Front. Plant Sci., vol. 11, Apr. 2020, doi: 10.3389/fpls.2020.00459.

V. V. Shende, K. D. Bauman, and B. S. Moore, “The shikimate pathway: gateway to metabolic diversity,” Nat. Prod. Rep., vol. 41, no. 4, pp. 604–648, Apr. 2024, doi: 10.1039/D3NP00037K.

M. P. Gomes, P. L. Freitas, R. S. A. Kitamura, E. G. Pereira, and P. Juneau, “How aminomethylphosphonic acid (AMPA), the main glyphosate metabolite, interferes with chlorophyll biosynthesis?,” Environmental and Experimental Botany, vol. 203, p. 105039, Nov. 2022, doi: 10.1016/j.envexpbot.2022.105039.

M. P. Gomes et al., “Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview,” Journal of Experimental Botany, vol. 65, no. 17, pp. 4691–4703, Sep. 2014, doi: 10.1093/jxb/eru269.

L. A. García-Villanueva et al., “Effects of Glyphosate on the Environment and Human Health,” Nat. Env. Poll. Tech, vol. 23, no. 1, pp. 17–32, Mar. 2024, doi: 10.46488/NEPT.2024.v23i01.002.

R. Singh, A. Shukla, G. Kaur, M. Girdhar, T. Malik, and A. Mohan, “Systemic Analysis of Glyphosate Impact on Environment and Human Health,” ACS Omega, vol. 9, no. 6, pp. 6165–6183, Feb. 2024, doi: 10.1021/acsomega.3c08080.

T. Rivas-Garcia, A. Espinosa-Calderón, B. Hernández-Vázquez, and R. Schwentesius-Rindermann, “Overview of Environmental and Health Effects Related to Glyphosate Usage,” Sustainability, vol. 14, no. 11, p. 6868, Jan. 2022, doi: 10.3390/su14116868.

R. S. Plumb et al., “Advances in high throughput LC/MS based metabolomics: A review,” TrAC Trends in Analytical Chemistry, vol. 160, p. 116954, Mar. 2023, doi: 10.1016/j.trac.2023.116954.

O. Fraisier-Vannier et al., “MS-CleanR: A Feature-Filtering Workflow for Untargeted LC–MS Based Metabolomics,” Anal. Chem., vol. 92, no. 14, pp. 9971–9981, Jul. 2020, doi: 10.1021/acs.analchem.0c01594.

T. Ruman, S. Krupa, and J. Nizioł, “Direct Three-Dimensional Mass Spectrometry Imaging with Laser Ablation Remote Atmospheric Pressure Photoionization/Chemical Ionization,” Anal. Chem., vol. 96, no. 32, pp. 13326–13334, Aug. 2024, doi: 10.1021/acs.analchem.4c03402.

J. Szulc, T. Grzyb, J. Nizioł, S. Krupa, W. Szuberla, and T. Ruman, “Direct 3D Mass Spectrometry Imaging Analysis of Environmental Microorganisms,” Molecules, vol. 30, no. 6, Art. no. 6, Jan. 2025, doi: 10.3390/molecules30061317.

J. Szulc, T. Grzyb, B. Gutarowska, J. Nizioł, S. Krupa, and T. Ruman, “3D Mass Spectrometry Imaging as a Novel Screening Method for Evaluating Biocontrol Agents,” J. Agric. Food Chem., vol. 73, no. 14, pp. 8225–8242, Apr. 2025, doi: 10.1021/acs.jafc.5c00349.

A. Ossolińska, A. Płaza-Altamer, K. Ossoliński, T. Ossoliński, T. Ruman, and J. Nizioł, “Untargeted metabolomic profiling of serum and urine in kidney cancer: a non-invasive approach for biomarker discovery,” Metabolomics, vol. 21, no. 4, p. 97, Jul. 2025, doi: 10.1007/s11306-025-02294-4.

P. Antos, J. Szulc, T. Ruman, M. Balawejder, K. Tereszkiewicz, and B. Kusz, “Ozonation procedure for removal of mycotoxins in maize: A promising screening approach for improvement of food safety,” PLOS ONE, vol. 19, no. 10, p. e0310317, Oct. 2024, doi: 10.1371/journal.pone.0310317.

Z. Pang et al., “MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation,” Nucleic Acids Research, vol. 52, no. W1, pp. W398–W406, Jul. 2024, doi: 10.1093/nar/gkae253.

K. Kawade, H. Tabeta, A. Ferjani, and M. Y. Hirai, “The Roles of Functional Amino Acids in Plant Growth and Development,” Plant and Cell Physiology, vol. 64, no. 12, pp. 1482–1493, Dec. 2023, doi: 10.1093/pcp/pcad071.

T. M. Hildebrandt, A. Nunes Nesi, W. L. Araújo, and H.-P. Braun, “Amino Acid Catabolism in Plants,” Molecular Plant, vol. 8, no. 11, pp. 1563–1579, Nov. 2015, doi: 10.1016/j.molp.2015.09.005.

L. Orcaray, A. Zulet, A. Zabalza, and M. Royuela, “Impairment of carbon metabolism induced by the herbicide glyphosate,” Journal of Plant Physiology, vol. 169, no. 1, pp. 27–33, Jan. 2012, doi: 10.1016/j.jplph.2011.08.009.

K. Kosová, P. Vítámvás, I. T. Prášil, and J. Renaut, “Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response,” Journal of Proteomics, vol. 74, no. 8, pp. 1301–1322, Aug. 2011, doi: 10.1016/j.jprot.2011.02.006.

J. Bonner, “Protein Synthesis in Plants,” in Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progrès dans la Chimie des Substances Organiques Naturelles, J. Bonner, K. Freudenberg, H. Kuhn, E. E. Van Tamelen, Z. Valenta, K. Weinges, and K. Wiesner, Eds., Vienna: Springer, 1958, pp. 139–168. doi: 10.1007/978-3-7091-8047-1_4.

M. Trovato, D. Funck, G. Forlani, S. Okumoto, and R. Amir, “Editorial: Amino Acids in Plants: Regulation and Functions in Development and Stress Defense,” Front. Plant Sci., vol. 12, Oct. 2021, doi: 10.3389/fpls.2021.772810.

K.-T. Lee, H.-S. Liao, and M.-H. Hsieh, “Glutamine Metabolism, Sensing and Signaling in Plants,” Plant and Cell Physiology, vol. 64, no. 12, pp. 1466–1481, Dec. 2023, doi: 10.1093/pcp/pcad054.

M. W. Hyun, Y. H. Yun, J. Y. Kim, and S. H. Kim, “Fungal and Plant Phenylalanine Ammonia-lyase,” Mycobiology, vol. 39, no. 4, pp. 257–265, Dec. 2011, doi: 10.5941/MYCO.2011.39.4.257.

R. N. Costa et al., “Hormetic Effect of Glyphosate on the Morphology, Physiology and Metabolism of Coffee Plants,” Plants, vol. 12, no. 12, Art. no. 12, Jan. 2023, doi: 10.3390/plants12122249.

I. P. Brito, L. Tropaldi, C. A. Carbonari, and E. D. Velini, “Hormetic effects of glyphosate on plants,” Pest Management Science, vol. 74, no. 5, pp. 1064–1070, 2018, doi: 10.1002/ps.4523.

S. O. Duke, J. Lydon, W. C. Koskinen, T. B. Moorman, R. L. Chaney, and R. Hammerschmidt, “Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops,” J. Agric. Food Chem., vol. 60, no. 42, pp. 10375–10397, Oct. 2012, doi: 10.1021/jf302436u.

Gail. Dolan, “The metabolism of phenylalanine.,” 1966, doi: 10.20381/RUOR-8492.

F. Zulfiqar, M. Ashraf, and K. H. M. Siddique, “Role of Glycine Betaine in the Thermotolerance of Plants,” Agronomy, vol. 12, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/agronomy12020276.

M. G. Annunziata, L. F. Ciarmiello, P. Woodrow, E. Dell’Aversana, and P. Carillo, “Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses,” Front. Plant Sci., vol. 10, Mar. 2019, doi: 10.3389/fpls.2019.00230.

P. Jain et al., “Plant Performance and Defensive Role of Glycine Betaine Under Environmental Stress,” in Plant Performance Under Environmental Stress : Hormones, Biostimulants and Sustainable Plant Growth Management, A. Husen, Ed., Cham: Springer International Publishing, 2021, pp. 225–248. doi: 10.1007/978-3-030-78521-5_9.

“Human Metabolome Database: Showing metabocard for Sarcosine (HMDB0000271).” Accessed: Jun. 19, 2025. [Online]. Available: https://www.hmdb.ca/metabolites/HMDB0000271

“Human Metabolome Database: Showing metabocard for Trehalose (HMDB0000975).” Accessed: Jun. 24, 2025. [Online]. Available: https://www.hmdb.ca/metabolites/HMDB0000975

“Human Metabolome Database: Showing metabocard for D-Glucose (HMDB0000122).” Accessed: Jun. 24, 2025. [Online]. Available: https://www.hmdb.ca/metabolites/HMDB0000122

“Human Metabolome Database: Showing metabocard for Sucrose (HMDB0000258).” Accessed: Jun. 24, 2025. [Online]. Available: https://www.hmdb.ca/metabolites/HMDB0000258

O. Stein and D. Granot, “An Overview of Sucrose Synthases in Plants,” Front. Plant Sci., vol. 10, Feb. 2019, doi: 10.3389/fpls.2019.00095.

W. Ding, K. N. Reddy, R. M. Zablotowicz, N. Bellaloui, and H. Arnold Bruns, “Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate,” Chemosphere, vol. 83, no. 4, pp. 593–598, Apr. 2011, doi: 10.1016/j.chemosphere.2010.12.008.

H.-S. Yi et al., “Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness,” Front. Microbiol., vol. 7, Jun. 2016, doi: 10.3389/fmicb.2016.00993.

K. Ospino and B. Spira, “Glyphosate affects persistence and tolerance but not antibiotic resistance,” BMC Microbiology, vol. 23, no. 1, p. 61, Mar. 2023, doi: 10.1186/s12866-023-02804-1.

D. Wicke et al., “Identification of the first glyphosate transporter by genomic adaptation,” Environmental Microbiology, vol. 21, no. 4, pp. 1287–1305, 2019, doi: 10.1111/1462-2920.14534.

F. Nur Koc and B. Seckin Dinler, “Pipecolic acid in plants: biosynthesis, signalling, and role under stress,” Botanica, pp. 4–14, 2022, doi: 10.35513/Botlit.2022.1.2.

A. Kundu, “Vanillin biosynthetic pathways in plants,” Planta, vol. 245, no. 6, pp. 1069–1078, Jun. 2017, doi: 10.1007/s00425-017-2684-x.

A. Sharma, B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi, and B. Zheng, “Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress,” Molecules, vol. 24, no. 13, Art. no. 13, Jan. 2019, doi: 10.3390/molecules24132452.

“PathBank.” Accessed: Jun. 29, 2025. [Online]. Available: https://pathbank.org/view/SMP0012440

H. Beevers, “4 - The Role of the Glyoxylate Cycle,” in Lipids: Structure and Function, P. K. Stumpf, Ed., Academic Press, 1980, pp. 117–130. doi: 10.1016/B978-0-12-675404-9.50010-2.

S. P. Singh, X.-R. Zhou, Q. Liu, S. Stymne, and A. G. Green, “Metabolic engineering of new fatty acids in plants,” Current Opinion in Plant Biology, vol. 8, no. 2, pp. 197–203, Apr. 2005, doi: 10.1016/j.pbi.2005.01.012.

M. J. Kolar et al., “Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals,” Journal of Biological Chemistry, vol. 294, no. 27, pp. 10698–10707, Jul. 2019, doi: 10.1074/jbc.RA118.006956.

B. G. Forde and P. J. Lea, “Glutamate in plants: metabolism, regulation, and signalling,” Journal of Experimental Botany, vol. 58, no. 9, pp. 2339–2358, Jul. 2007, doi: 10.1093/jxb/erm121.

J.-F. Morot-Gaudry, D. Job, and P. J. Lea, “Amino Acid Metabolism,” in Plant Nitrogen, P. J. Lea and J.-F. Morot-Gaudry, Eds., Berlin, Heidelberg: Springer, 2001, pp. 167–211. doi: 10.1007/978-3-662-04064-5_7.

B. O’Leary and W. C. Plaxton, “The central role of glutamate and aspartate in the post-translational control of respiration and nitrogen assimilation in plant cells.,” in Amino acids in higher plants, in CABI Books. , 2015, pp. 277–297. doi: 10.1079/9781780642635.0277.

R. D. Slocum, “Genes, enzymes and regulation of arginine biosynthesis in plants,” Plant Physiology and Biochemistry, vol. 43, no. 8, pp. 729–745, Aug. 2005, doi: 10.1016/j.plaphy.2005.06.007.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors. Published by Chemical Technology & Biotechnology.