Abstract
The photophysical and antioxidant properties of 3-hydroxyflavone (3HF) and its complexes with Mn(II), Co(II), and Zn(II) ions were investigated. Fluorescence spectra of 3HF in methanol revealed a pronounced excitation-wavelength dependence characteristic of the excited-state intramolecular proton transfer (ESIPT) process. Complexation with d-electron metal ions significantly altered the emission properties. The Zn(II) complex exhibited higher fluorescence intensity than the free ligand, consistent with the chelation-enhanced fluorescence effect and partial suppression of the ESIPT process. In contrast, Mn(II) and Co(II) complexes showed strongly reduced intensities, indicating fluorescence quenching associated with the paramagnetic character of these ions and the promotion of intersystem crossing. Antioxidant activity assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method showed moderate inhibition for 3-hydroxyflavone (24.0%). Among the complexes, Mn-3HF exhibited the highest activity (33.4%), while Co-3HF and Zn-3HF showed only minimal effects (7.1% and 5.9%). These results indicate that metal coordination modulates the antioxidant properties of 3HF, enhancing them in the case of Mn(II) and suppressing with Co(II) and Zn(II). The results demonstrate that coordination with d-electron metal ions exerts a strong influence on both the fluorescence properties and the antioxidant activity of 3HF.
References
Panche, A.N., Diwan, A.D., Chandra, S.R., Flavonoids: an overview, J. Nutr. Sci., 5, e47 (2016). https://doi.org/10.1017/jns.2016.41
Chen, S., Wang, X., Cheng, Y., Gao, H., Chen, X., A Review of Classification, Biosynthesis, Biological Activities, and Potential Applications of Flavonoids, Molecules, 28, 4982 (2023). https://doi.org/10.3390/molecules28134982
Todorova, T.Z., Traykov, M.G., Tadjer, A.V., Velkov, Zh.A., Structure of flavones and flavonols. Part I: Role of substituents on the planarity of the system, Comput. Theor. Chem., 1017, 85–90 (2013). https://doi.org/10.1016/j.comptc.2013.05.005
Spiegel, M., Andruniów, T., Sroka, Z., Flavones’ and Flavonols’ Antiradical Structure–Activity Relationship A Quantum Chemical Study, Antioxidants, 9, 461 (2020). https://doi.org/10.3390/antiox9060461
Gunduz, S., Goren, A.C., Ozturk, T., Facile Syntheses of 3-Hydroxyflavones, Org. Lett., 14, 1572–1575 (2012). https://doi.org/10.1021/ol300310e
Pereira, A.M., Cidade, H., Tiritan, M.E., Stereoselective Synthesis of Flavonoids: A Brief Overview, Molecules, 28, 426 (2023). https://doi.org/10.3390/molecules28010426
Kostrzewa-Susłow, E., Dmochowska-Gładysz, J., Białońska, A., Ciunik, Z., Rymowicz, W., Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains, J. Mol. Catal. B: Enzym., 39, 18–23 (2006). https://doi.org/10.1016/j.molcatb.2006.01.020
Ren, X., Zhang, J., Wang, X., Zhou, W., Sun, W., Biotransformation of 2′-hydroxyflavanone by Streptomyces coeruleorubidus leading to 3-hydroxylated and glucuronidated derivatives, J. Biosci. Bioeng., 129, 172–181 (2025). https://doi.org/10.1016/j.jbiosc.2024.11.004
Niraula, N.P., Kuroda, M., Doi, M., Komori, T., Ohashi, Y., Yamane, H., Noguchi, H., CYP105P2, a cytochrome P450 from Streptomyces peucetius capable of flavone hydroxylation in Escherichia coli, J. Microbiol. Biotechnol., 22, 1059–1065 (2012). https://doi.org/10.4014/jmb.1201.01037
Leonard, E., Koffas, M.A.G., Engineering E. coli for flavonoid biosynthesis and hydroxylation, Metab. Eng., 8, 172–181 (2006). https://doi.org/10.1016/j.ymben.2005.11.001
Marín, L., Gutiérrez-Delgado, S., Lombó, F., De novo biosynthesis of flavonols by engineered Streptomyces strains, PLoS ONE, 13(11), e0207278 (2018). https://doi.org/10.1371/journal.pone.0207278
Winkler, V.S.; Fournier, J.A.; Characterizing excited-state intramolecular proton transfer in 3 hydroxyflavone with ultrafast transient infrared spectroscopy, Chem. Commun., 60, 12417–12420 (2024). https://doi.org/10.1039/D4CC03427A
Anand, N.; Welke, K.; Irle, S.; Vennapusa, S.R.; Nonadiabatic excited-state intramolecular proton transfer in 3 hydroxyflavone: S₂ state involvement via multi mode effect, J. Chem. Phys. , 151, 214304 (2019). https://doi.org/10.1063/1.5127271
Ash, S.; De, S.P.; Pyne, S.; Misra, A.; Excited states potential energy calculations support the ESIPT process in 3HF, J. Mol. Model. , 16, 1683–1691 (2010). https://doi.org/10.1007/s00894-009-0578-y
McMorrow, D.; McHale, J.L.; Intramolecular excited-state proton transfer in 3 hydroxyflavone. Hydrogen bonding solvent perturbations, J. Phys. Chem. , 88, 11, 2235–2243 (1984). https://doi.org/10.1021/j150655a012
Zhao, X., Liang, S., Dong, X., Zhang, Z., 3-Hydroxyflavone derivatives: promising scaffolds for fluorescence imaging—emission mechanism and solvent effects, RSC Adv., 11, 28851–28862 (2021). https://doi.org/10.1039/D1RA04767A
Salaeh, R., Prommin, C., Chansen, W., Kerdpol, K., Daengngern, R., Kungwan, N., The effect of protic solvent on ESPT reaction of 3-hydroxyflavone: A TD-DFT static and molecular dynamics study, J. Mol. Liq., 252, 303–310(2018). https://doi.org/10.1016/j.molliq.2017.12.148
Klymchenko, A. S., Pivovarenko, V. G., Demchenko, A. P., Elimination of the Hydrogen Bonding Effect on the Solvatochromism of 3-Hydroxyflavones. J. Phys. Chem. A, 107, 4211–4216 (2003). https://doi.org/10.1021/jp027315g
Strandjord, A.J.G., Barbara, P.F., Excited-state intramolecular proton transfer of 3-hydroxyflavone, J. Phys. Chem., 89, 2355–2361 (1985). https://doi.org/10.1021/j100257a041
Lazzaroni, S., Dondi, D., Mezzetti, A., Protti, S., Excited state intramolecular proton transfer: state of the art and new insights on 3-hydroxyflavone derivatives, Photochem. Photobiol. Sci., 17, 923–933 (2018). https://doi.org/10.1039/C8PP00053K
Durko-Maciąg, M., Ulrich, G., Jacquemin, D., Mysliwiec, J., Massue, J., Large Stokes shift emission via ESIPT in 3-hydroxyflavone analogues for optoelectronic applications, Phys. Chem. Chem. Phys., 25, 15085–15098 (2023). https://doi.org/10.1039/D3CP00938F
Liang, R., Li, Y., Yan, Z., Bai, X., Lai, W., Du, L., Phillips, D.L., Mechanistic details of excited-state intramolecular proton transfer in 3-hydroxyflavone revealed by femtosecond stimulated Raman spectroscopy, ACS Phys. Chem. Au, 3, 181–189 (2023). https://doi.org/10.1021/acsphyschemau.2c00036
Kerdpol, K., Daengngern, R., Sattayanon, C., Namuangruk, S., Rungrotmongkol, T., Wolschann, P., Kungwan, N., Hannongbua, S. Effect of Water Microsolvation on the Excited State Proton Transfer of 3 Hydroxyflavone Enclosed in γ Cyclodextrin., Molecules, 26, 843. (2021). doi:10.3390/molecules26040843
Cao, H., Chen, X., Jassbi, A.R., Xiao, J., Microbial biotransformation of bioactive flavonoids, Biotechnol. Adv., 33, 214–223 (2015). https://doi.org/10.1016/j.biotechadv.2014.10.012
Heim, K.E., Tagliaferro, A.R., Bobilya, D.J., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, J. Nutr. Biochem., 13, 572–584 (2002). https://doi.org/10.1016/S0955-2863%2802%2900208-5
Leopoldini, M., Russo, N., Toscano, M., The molecular basis of working mechanism of natural polyphenolic antioxidants, Food Chem., 125, 288–306 (2011). https://doi.org/10.1016/j.foodchem.2010.08.012
Litwinienko, G., Ingold, K.U., Abnormal solvent effects on the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (DPPH•) in alcohols, J. Org. Chem., 68, 3433–3438 (2003). https://doi.org/10.1021/jo026917t
Leopoldini, M., Marino, T., Russo, N., Toscano, M., Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism, J. Phys. Chem. A, 108, 4916–4922 (2004). https://doi.org/10.1021/jp037247d
Dyba, B., Miłoś, A., Woźnicka, E., Rudolphi-Szydło, E., Ciszkowicz, E., The effects of 3-hydroxyflavone complexes with transition metal ions on the physicochemical and microbial properties of bacterial cell membranes, Sci. Rep., 15, 20743 (2025). https://doi.org/10.1038/s41598-025-07358-y
Fan, K.W.; Luk, H.L.; Phillips, D.L. Anti-Kasha Behavior of 3-Hydroxyflavone and Its Derivatives. Int. J. Mol. Sci. , 22, 11103 (2021). https://doi.org/10.3390/ijms222011103
Tomin, V.I., Javorski, R. Dependence of the properties of the dual luminescence of 3-hydroxyflavone on the excitation wavelength. Opt. Spectrosc. 102, 242–247 (2007). https://doi.org/10.1134/S0030400X07020129
Sengupta, P. K., & Kasha, M., Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem. Phys. Lett., 68, 382–385 (1979). . https://doi.org/10.1016/0009-2614(79)87221-8
Shekhovtsov, N. A., Nikolaenkova, E. B., Vorobyova, S. N., Plyusnin, V. F., Vinogradova, K. A., Sukhikh, T. S., Tikhonov, A. Y., Bushuev, M. B. Luminescence of ESIPT-capable zinc(II) complexes with a 1-hydroxy-1H-imidazole-based ligand: Exploring the impact of substitution in the proton-donating moiety. Dalton Trans., 50, 2124–2134 (2021). . https://doi.org/10.1039/D3DT01190A
Diana, R., Panunzi, B., The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules , 25, 4984 (2020). https://doi.org/10.3390/molecules25214984
Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J., & Ghosh, S. K. Metal–organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem Soc Rev., 46, 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
Yersin, H., Tsuboi, T., Hoshina T,. Intersystem crossing, phosphorescence, and spin–orbit coupling: Two different theoretical descriptions and their comparison, Proc Jpn Acad Ser B Phys Biol Sci., ;99, 482-97. (2023). https://doi.org/10.2183/pjab.99.031.
Tang, X., Wang, L., Zhang, Y., Sun, C., Relationship between antioxidant activity and ESIPT process based on flavonoid derivatives: A comprehensive analysis. Spectrochim Acta A Mol Biomol Spectrosc., 15, 327-125370 (2025). https://doi.org/10.1016/j.saa.2024.125370
Rice-Evans, C.A., Miller, N.J., Paganga, G., Structure–antioxidant activity relationships of flavonoids and phenolic acids, Free Radic. Biol. Med., 20, 933–956 (1996). https://doi.org/10.1016/0891-5849(95)02227-9
Heim, K.E., Tagliaferro, A.R., Bobilya, D.J., Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships, J. Nutr. Biochem., 13, 572–584 (2002). https://doi.org/10.1016/S0955-2863(02)00208-5
Pietta, P.G., Flavonoids as antioxidants, J. Nat. Prod., 63, 1035–1042 (2000). https://doi.org/10.1021/np9904509
Seyoum, A., Asres, K., El-Fiky F.K., Structure-radical scavenging activity relationships of flavonoids. Phytochem., 67, 2058-70 (2006). https:// doi: 10.1016/j.phytochem.2006.07.002
Katalinić, V., Možina, S.S., Skroza, D., Generalić, I., Abramovič, H., Miloš, M., Ljubenkov, I., Piskernik, S., Pezo, I., Terpinc, P., Boban, M., Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia), Food Chem., 119, 715–723 (2010). https://doi.org/10.1016/j.foodchem.2009.07.019

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 The Authors. Published by Chemical Technology & Biotechnology.

