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Abstract: This paper presents the results of determining the value of the coefficient of friction on the drawbead in sheet
metal forming. As the research material, steel, brass and aluminium alloy sheets cut at different directions according to the sheet
rolling direction were used. Sheet strip specimens were tested under dry friction and lubrication of sheet surfaces using machine
oil. Results of experiments were used to study the effect of process parameters on the coefficient of friction using artificial neural
networks. Input data was optimized using genetic algorithm, forward stepwise selection and backward stepwise selection. The aim
of the research was to determine the effect of the value of the unit penalty on the significance of individual input parameters of
the neural network and the value of the error generated by the multilayer perceptron. It was found that in the case of all materials
the value of coefficient of friction for specimen orientation 90° was greater than for the specimen orientation 0°. Friction tests also
reveal that sheet lubrication reduced the frictional resistance by 12-39%, depending on the grade of sheet material. Among all
input parameters that significantly affect the value of the coefficient of friction the most important are the lubrication conditions
and the orientation of the sample.
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Streszczenie: W artykule przedstawiono wyniki wyznaczania warto$ci wspotczynnika tarcia na progu ciggowym w procesie
ksztattowania blach. Jako materiat badawczy wykorzystano blachy stalowe, mosiezne i ze stopu aluminium, ktére zostaty
wyciete w réznych kierunkach wzgledem kierunku walcowania blachy. Pasy blachy badano w warunkach tarcia suchego oraz
smarowania powierzchni blach olejem maszynowym. Wyniki eksperymentéw postuzyty do zbadania wptywu parametréw procesu
tarcia na wartos¢ wspétczynnika tarcia za pomocg sztucznych sieci neuronowych. Dane wejsciowe zostaty zoptymalizowane przy
uzyciu algorytmu genetycznego, selekcji krokowej postepujacej oraz wstecznej. Celem badan byto okreslenie wptywu wartosci
kary jednostkowej na istotnoS¢ poszczegdlnych parametrow wejsciowych sieci neuronowej oraz wartos¢ btedu generowanego
przez perceptron wielowarstwowy. Stwierdzono, ze w przypadku wszystkich materiatéw warto$¢ wspétczynnika tarcia probek
zorientowanych pod katem 90° byta wieksza niz dla orientacji probek 0°. Testy tarcia wykazaty réwniez, ze smarowanie blach
zmniejszyto opory tarcia o 12-39% w zaleznosci od gatunku materiatu blachy. Sposréd wszystkich parametréw wejsciowych, ktére
istotnie wptywajg na warto$¢ wspétczynnika tarcia, najwazniejsze z nich to warunki smarowania oraz orientacja prébki.

Stowa kluczow e: sztuczne sieci neuronowe, wspoétczynnik tarcia, prog ciggowy, tarcie, ksztattowanie blach

Introduction
— high normal pressures greater than the yield point of

The friction between the working surface of the tool and the workpiece,

the plastically deformed material has a significant impact —

on the deformation process and the surface roughness
of the drawpiece. External friction causes geometric and
kinematic limitations in the implementation of plastic
working processes [8, 13]. The type of friction (i.e., dry
mixed, boundary) significantly affects the damage to the
surface of the component. The frictional connections
formed on the surface of the tool cause scratches and
burrs on the surfaces of the drawpiece. The phenomenon
of friction in plastic working processes differs significantly
from friction in machine joints due to [11, 15, 18]:

— large deformations,

— continuous change of surface topography of the

workpiece,
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low relative speeds.

Deep drawing is one of the basic operations of plastic
working and consists in transforming a flat sheet into
a drawpiece with an non-developable surface [14,17].
During deep-drawing in the bottom of the drawpiece and
the cylindrical surface dominate tensile stresses [12,
16]. In the flange, apart from tensile stress, compressive
stresses also occur. The sheet metal forming process is
most often carried out on presses with tools consisting of
a punch, die and blankholder. VWWhen forming drawpieces
with complex shapes, different sliding speeds occur at
different locations on the drawpiece [16]. Draw beads
(Fig. 1) are used to limit the flow of material around the
flange of the drawpiece [5, 10].
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Fig.1. Design of the machined element

flowing direction

Due to the large number of factors influencing
a given phenomenon, the development of analytical
relationships for determining the response function
for given process conditions is practically impossible.
This task is successfully performed by artificial neural
networks belonging to artificial intelligence methods. The
condition for the proper operation of the neural network
is the necessity to preselect the input data, which
significantly affect the value of the variable explained by
the use of the decomposition mechanism. The purpose of
data decomposition is to find an answer to the question
whether there is a relationship between the input variables
and the dependent variable, or whether the relationship
is completely random. Data processing systems allow for
automatic analysis of a complex set of information and
generating answers to the questions asked.

Due to the large number of factors influencing a given
phenomenon, it is practically impossible to develop
analytical relationships to determine the response
function for given conditions of process implementation.
This task is successfully performed by artificial neural
networks belonging to artificial intelligence methods,
whose structure and principle of operation are similar
to information processing by living organisms [9]. The
condition for the proper operation of the neural network
is the necessity to preselect the input data, which
significantly affect the value of the output variable by the
use of the decomposition mechanism [3, 6]. The purpose
of data decomposition is to find an answer to the question
whether there is a relationship between the input variables
and the dependent variable, or whether the relationship
is completely random. Data processing systems allow for
automatic analysis of a complex set of information and
generating answers to the questions asked [1, 4].

Among the many methods of optimizing the number of
training variables, one can mention the Hellwig method,
the forward selection method, backward selection,
stepwise selection, taboo-search and floating selection.
The genetic algorithm searches combinations of features
at random. In the next steps of the algorithm, sets of
possible solutions (populations) are assessed. The rules
governing mutation, crossing and selection ensure that

4

a new population is generated randomly. Nevertheless,
in the next steps of the algorithm, better and better
individuals are obtained, i.e. sets of features with higher
and higher ratings. Simulated annealing algorithm moves
sequentially among all possible combinations of features.
The rating of a subset of features after the step, i.e. after
eliminating one feature, is compared with the rating before
the step. There is some probability that the feature will
be removed from the subset, even though the resulting
subset is judged worse.

In this paper, methods of optimizing the number of
input variables of a neural network using three different
algorithms based on the results of friction testing. The
draw-bead tribological test is used to model the friction
phenomenon at the drawbead during sheet metal forming.
Three grades of brass, steel and aluminium alloy sheets
were tested. The aim of the investigations is to determine
the effect of the value of the unit penalty function on (i)
the significance of individual input variables of the neural
network and (ii) the value of the error generated by the
artificial neural network for the training set.

Material and methods

In the tests three grades of brass sheets M63 z4 (1/2
hard), M80 r (soft) and M90 z4 (1/2 hard), three grades
of aluminium alloy sheets AA5251 r (recrystallised),
AA5251 H14 (strain-hardened - 1/2 hard) and AA5251
H22 (strain-hardened and partially annealed - 1/4 hard),
and deed-drawing quality steel sheets DC01, DC03 and
DCO04 were used. The samples for the friction test were
prepared as strips approximately 200 mm long and 20
mm wide. The values of the basic mechanical parameters
were determined in the uniaxial tensile test. Tensile tests
were carried out using a universal testing machine with
a constant crosshead speed of 5 mm/min at ambient
temperature. The values of the strain hardening cefficient
K and the strain hardening exponent n in the Hollomon
equation are determined as follows:

Jp=K-£” ™)

where 0, - stress and & - plastic strain are determined
from the logarithmic true stress—true strain plot by linear
regression.

The values of the roughness parameters were
determined using the Surtronic 3+ Taylor Hobson surface
roughness profilometer.

The friction phenomenon arising in the drawbead
region of the stamping die have been determined using
a drawbead simulator. The model of the simulator is
shown in Fig. 2. The device is designed to allow the
separation of the deformation resistance of the sheet
and the frictional resistance from the total resistance of
the sheet metal deformation at the drawbead. Counter-
samples in the form of rollers with a diameter of 20
mm and a width of 22 mm were made of cold work tool
steel. The surface roughness of rollers was Ra = 0.32
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Table. 1. Mechanical properties and roughness parameters of the tested sheets *

. R R Ra, ym Rq, pm Rt, ym
Material Grade MPI%: MS’a As, % | K, MPa n " 900 " 000 o 900°
M63 z4 313 397 | 036 | 589 | 015 | 017 0.2 0.31 0.4 25 4.8
Brass M80 r 120 280 | 048 | 594 | 037 | 014 | 016 | 018 | 0.18 1.4 1.9
M0 z4 346 352 | 042 | 426 | 004 | 040 06 058 | 0.94 6.1 9.9
AA5251 1 68 203 | 018 | 252 | 028 | 058 | 059 | 114 | 0.93 6.9 7.0
A":I'I‘;';is”m AA5251 H14 212 234 | 004 | 254 | 006 | 022 | 028 | 029 | 035 2.4 25
AA5251 H22 11 201 019 | 370 | 024 | 048 | 049 | 064 | 064 4.1 4.1
DCO1 193 351 036 | 554 | 0417 | 023 | 028 | 028 | 041 25 4.7
Steel DCO03 196 336 | 042 | 557 | 049 | 045 | 035 | 062 | 049 3.1 6.4
DCO04 162 310 | 042 54 021 | 062 | 051 | 084 | 072 4.1 8.2

* Ry, — yield stress, Rm — ultimate tensile stress, Ag, — elongation, K — strain hardening coefficient, n — strain hardening exponent,
Ra — average surface roughness, Rq — root mean square deviation of the profile under assessment, Rt — total height of the profile
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Fig. 2. Cross-section of a drawbead simulator: 1 — frame; 2
— upper tension member; 3 — specimen; 4 — working rollers;
5 — support roller; 6 and 7 — load cells; 8 — horizontal tension
member; 9 — pin; 10 — wing nut

pm, measured parallel to the shaft axis. The tests were
carried out at the wrap angle of the middle roller equal
to 180°. Friction tests were carried out at dry friction and
lubrication conditions using LAN 46 machine oil (Orlen
Qil, Krakéw, Poland). The properties of this oils provided
by the manufacturer are listed in Table 2. Prior to testing,
both sides of the specimen were oiled by a roller system
that permits one to obtain a uniform oil coating between
1.5 and 2 g-m™2, which is comparable with the conditions
of the stamping process. Specimens for tests were cut
along (0°) and transversely (90°) to the rolling direction
of the sheet. The drawing speed of strip specimens was
0.002 m/s.
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The method of determining the coefficient of friction
(COF) requires two tests of drawing a sheet metal strip
over rotating and fixed rollers. Drawing the specimen
over a set of rotating rollers allows one to minimise
the frictional resistance. The drawing force in this case
is mainly associated with overcoming the deformation
resistance of the sheet metal strip. A set of fixed rollers
represents the total resistance of drawing the specimen
through the drawbead.

The difference in the pulling force for the rotating and
fixed rollers can be attributed to the friction process and
used to calculate the value of the coefficient of friction
according to the relationship:

1Fp—F
_Tl' Np

where N is the normal force obtained with fixed
beads, FF is the pulling force obtained with fixed rollers
and Fjyis the pulling force obtained with the freely rotating
rollers.

i )




As a result of the experimental friction tests, 36
different training sets (TSs) were obtained (6 grades of
sheets x 2 sample orientations x 2 lubrication conditions).
On the basis of the received sets of input signals and
the corresponding values of the COF, regression models
were built using the Statistica program and the impact of
the applied methods of optimizing the input signals on
the quality of the neural network was assessed. For the
analysis, the model of a multilayer perceptron (MLP) was
adopted, which, with a properly selected structure, can
model any regression problem [2, 7]. From all training
pairs (input signals and the corresponding output signal),
10% of cases were randomly selected and included in
the validation set (VS). Data from this group was used
for independent control of the training algorithm. The
remaining number of cases was assigned to the training
set.

Data preprocessing

The following set of variables was selected as input

parameters in MLP:
— mechanical parameters R 5, R, A5, Kand n,
— surface roughness parameters of sheets, Ra, Rq and

Rt,

— lubrication conditions,
— sample orientation.

The input data was optimized with a genetic algo-
rithm, forward stepwise selection, and backward stepwi-
se selection. The aim of the genetic algorithm is to find
a solution for which the value of the fitness function re-
aches the maximum. The algorithm worked on the initial
population of 300 individuals with the crossing coefficient
¢ = 0.5, the mutation rate r,, = 0.1 and different values
of the unit penalty p = 0.0005, p = 0.001, p = 0.002, p =
0.004, p = 0.01, p = 0.03. The unit penalty is multiplied by
the number of input variables selected in each mask, and
then added to the validation error value. The task of the
genetic algorithm was to check the quality of the network
implementing the generalized regression for a given set
of input variables resulting from the reproduction mecha-
nism of the initial population.

Results
* Coefficient of friction

Table 2 presents the values of the friction coefficient
of the tested sheets, determined in the conditions of dry
friction (us) and in the conditions of lubricating the she-
et surface with oil (u,). For the specimen orientation 0°,
the values of the coefficient of friction under lubricated
conditions were lower by about 22-28% for brass sheets,
19-20% for aluminium alloy sheets and 23-39% for steel
sheets. For the specimen orientation 90°, the values of
the coefficient of friction under lubricated conditions were
lower by about 12-22% for brass sheets, 23-37% for alu-
minium alloy sheets and 32-37% for steel sheets. In the
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case of all materials the value of COF for specimen orien-
tation 90° was greater than for the specimen orientation
0°.

Table 2. Values of COFs for tested materials

Specimen Coefficient of friction
orientation ps po ps po ps po
Material M63 z4 M80 r M90 z4
0° 0.23 0.17 0.18 0.14 0.25 0.18
90° 0.25 0.22 0.19 0.15 0.27 0.21
Material 5251 r 5251 H14 5251 H22
0° 0.24 0.19 0.2 0.16 0.21 0.17
90° 0.26 0.2 0.26 0.18 0.29 0.18
Material DCo1 DCO03 DCo04
0° 0.24 0.18 0.17 0.13 0.23 0.14
90° 0.27 0.17 0.25 0.16 0.28 0.19

« Artificial neural networks

The results of the optimization analyzes carried out to
determine the input signals to the neural network are pre-
sented in Tables 3-5. Parameters that significantly affect
the value of the coefficient of friction and their removal
will worsen the explanation of the value of the coefficient
of friction are the lubrication conditions and the orien-
tation of the sample - these variables were selected by
each method, regardless of the value of the unit penalty.
Among the parameters of sheet surface roughness, the
parameters Ra (0°) and Rt (0°) have the most important
influence on the value of the friction coefficient.

In terms of the unit penalty values for each of the te-
sted algorithms, the local minimum network error value
for the training set is observed. The high error value with
a large number of variables can be explained by the no-
ise introduced by the variables, which can be correlated
with each other. For further analysis, set of input variables
were selected for which the network error value was the
smallest, i.e. 0.018 (Table 3).

When assessing the regression model, particular at-
tention should be paid to the ratio of the standard devia-
tion of errors and the standard deviation of the value of
the explained variable (S.D. ratio), and the Pearson cor-
relation coefficient R2. These parameters are determined
independently for each of the data sets.

Table 6 shows the regression statistics of the network
with input the parameters presented in Table 3 that ensu-
re the lowest value of the network error. Multiple analyzes
have been performed with MLPs containing varying num-
bers of neurons in hidden layer 5-15. The highest value of
the Pearson correlation coefficient with the lowest value
of S.D. ratio provided a network with a structure of 6:6-11-
1:1 (Fig. 3). Selected regression statistics of this network
are presented in Table 6. The value of the correlation
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Table 3. The influence of the value of the unit penalty on the selection of input variables by genetic algorithm

Variable . R o el n Ra | Ra | Rq | Rq Rt Rt | Lubrication | Specimen | ANN error
5 e 02 @ =2 (0°) | (90°) | (0°) | (90°) | (0°) | (90°) | conditions | orientation | for set TS
0.0005 - - - - + + - + - - - + + 0.0036
0.001 + + - + - - + + - - - + + 0.0028
0.002 + + + + + - - - - - - + + 0.0031
0.004 ~ + + _ - - + - - + - + + 0.0018
0.01 - - + - + - - - + + - + + 0.0029
0.03 - - - - - - - - - - + + + 0.0045

Table 4. The influence of the value of the unit penalty on the selection of input variables by backward stepwise selection

Variable R R A c q Ra Ra Rq Rq Rt Rt Lubrication | Specimen | ANN error
5 e 02 @ =2 (0°) | (90°) | (0°) | (90°) | (0°) | (90°) | conditions | orientation | for set TS
0.0005 + - + + - - - - - - - + + 0.0033
0.001 i _ + |+ | - _ + _ _ ; - + + 0.0043
0.002 + - + + + - - + - - - + + 0.0029
0.004 - + + - + - - - + + - + + 0.0041
0.01 - + + - - + - + - + - + + 0.0045
0.03 - - - - - + - + - + + + + 0.0051

Table 5. The influence of the value of the unit penalty on the selection of input variables by forward stepwise selection

Variable " = A = n Ra Ra Rg | Rq Rt Rt | Lubrication | Specimen | ANN error
5 e g2 o £l (0°) | (90°) | (0°) | (90°) | (0°) | (90°) | conditions | orientation | for set TS
0.0005 + + + - + + - + - - + + + 0.0042
0.001 + + - + - + + - - + - + + 0.0031
0.002 N - - - - + - - - - - + + 0.0023
0.004 - + + - + - + - - - + + + 0.0019
0.01 + + + + + + - - - + - + + 0.0028
0.03 _ + + - - - - - - - - + + 0.0061

Fig. 3. Structure of MLP 6:6-11-1:1

coefficient for the training set R2 = 0.968 proves a good
convergence of the training algorithm. The value of the
correlation coefficient for the validation set is much smal-
ler, but it should be emphasized that this set contained

Table 6. Regression statistics of MLP 6:6-11-1:1

Parameter TS Vs
Data Mean 0.2117 0.1814
Data S.D. 0.0428 0.0452
Error S.D. 0.0018 0.0106
Abs E. Mean 0.0084 0.0250
S.D. ratio 0.247 0.696
Correlation 0.968 0.795

only 10% of the training data. With an increasing number
of input data in the validation set, the statistics values for
that set will approach the corresponding statistics speci-
fied for the training set.
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As the sample orientation angle changes from 0° to
90°, the value of the friction coefficient increases (Fig. 4).
The change of the roughness parameter Ra (90°) in a les-
ser extent affects the change of the friction coefficient.
A different relationship can be observed for the influence
of the sample orientation and the roughness parameter
Ra (90°) on the value of COF (Fig. 5). When the Rt (0°)
parameter increases, the value of the friction coefficient
decreases, but only for small values of the sample orien-
tation angle. For the sample orientation of 90°, the value
of the friction coefficient depends to a small extent on the
value of the Rt (0°) parameter.

orientation

0°0.16

Fig. 3. Structure of MLP 6:6-11-1:1

specimen
orientation

00.18

Fig. 3. Structure of MLP 6:6-11-1:1

Conclusions
An approach to integration genetic algorithms and

stepwise selection of input variables in the working pro-
cess of neural networks to calculate the friction coefficient
in sheet metal forming is demonstrated in this article.
Proper selection of input variables is found to be crucial
task to ensure proper quality of the MLPs. This process
allows avoiding the time-consuming testing of MLPs with
different structure in order to find the optimum network for
specific task. The following conclusions are drawn from
the research:

— in the case of all materials the value of COF for speci-
men orientation 90° was greater than for the 0° orien-
tation,

— lubrication reduced the coefficient of friction by 12-
39%, depending on the grade of sheet material,

— optimisation of the number of input parameters shown
that surface roughness parameters Ra (0°) and Rt
(0°) have the most important influence on the value
of the COF,

— parameters that significantly affect the value of the
COF are the lubrication conditions and the orientation
of the sample,

— results of ANN modelling shows that as the sample
orientation angle changes from 0° to 90°, the value of
the COF increases,

— the change of the roughness parameter Ra (90°) in
a small extent affects the change of the COF.
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