Design for Assembly: Wrist Orthosis Design Concepts Proposals
PDF

Keywords

orthosis
3D scanning
additive manufacturing
fastening methods

How to Cite

Machaj, A., Sobczyk, K., Wojnarowska, W., & Wanic, M. (2024). Design for Assembly: Wrist Orthosis Design Concepts Proposals . Technologia I Automatyzacja Montażu (Assembly Techniques and Technologies), 125(3), 29-37. https://doi.org/10.7862/tiam.2024.3.4

Abstract

This study investigates the integration of modern engineering techniques, including 3D scanning and additive manufacturing, in the design and production of wrist orthoses. The research aims to enhance orthotic devices by proposing three innovative fastening methods - Velcro straps, screws, and magnets - designed for use with 3D-printed orthoses. The study outlines the entire process from patient hand scanning to the final orthosis creation, emphasizing the precision and customization afforded by these advanced technologies. The proposed designs are intended to improve the comfort, effectiveness, and usability of orthoses for patients with musculoskeletal dysfunctions. The findings demonstrate the potential for significant advancements in personalized medical devices, offering new avenues for rehabilitation and patient care. 

https://doi.org/10.7862/tiam.2024.3.4
PDF

References

Aranceta-Garza, A., & Ross, K. (2021). A comparative study of efficacy and functionality of ten commercially available wrist-hand orthoses in healthy females: Wrist range of motion and grip strength analysis. Frontiers in Rehabilitation Sciences, 2. https://doi.org/10.3389/fresc.2021.687554

Bader, D. L., & Pearcy, M. J. (1982). Material properties of Velcro fastenings. Prosthetics & Orthotics International, 6(2), 93–96. https://doi.org/10.3109/03093648209166773

Chen, R. K., Jin, Y., Wensman, J., & Shih, A. (2016). Additive manufacturing of custom orthoses and prostheses—A review. In Additive Manufacturing (Vol. 12, pp. 77–89). Elsevier BV. https://doi.org/10.1016/j.addma.2016.04.002

Coppard, B. M., & Lohman, H. (2020). Introduction to orthotics: A clinical reasoning & problem-solving approach. Elsevier/Mosby.

Haje, S. A., & de Podestá Haje, D. (2009). Orthopedic approach to pectus deformities: 32 years of studies. Revista Brasileira de Ortopedia (English Edition), 44(3), 191–198. https://doi.org/10.1016/s2255-4971(15)30067-7

Haque, A., Parsons, H., Parsons, N., Costa, M., Redmond, A., Mason, J., … & Kearney, R. (2023). Use of cast immobilization versus removable brace in adults with an ankle fracture: two-year follow-up of a multicentre randomized controlled trial. The Bone & Joint Journal, vol. 105-B no. 4, str. 382-388. https://doi.org/10.1302/0301-620x.105b4.bjj-2022-0602.r3

Jaworska, N., & Podsiadło, H. (2019). Technologia druku 3D jako szansa dla środowiska naturalnego. Acta Poligraphica, vol. 14.

Kapustka, K., Ziegmann, G., Klimecka-Tatar, D., & Nakonczy, S. (2020). Process management and technological challenges in the aspect of Pernament magnets recycling - the second life of neodymium magnets. Manufacturing Technology, 20(5), 617–624. https://doi.org/10.21062/mft.2020.098

Kemker, B. P., Kankaria, R., Patel, N., & Golladay, G. (2021). Hip and knee bracing: Categorization, treatment algorithm, and systematic review. JAAOS: Global Research and Reviews, 5(6). https://doi.org/10.5435/jaaosglobal-d-20-00181

Kumar, R., & Sarangi, S. K. (2021). 3D-Printed Orthosis: A Review on Design Process and Material Selection for Fused Deposition Modeling Process. Advances in Materials Processing and Manufacturing Applications: Proceedings of iCADMA 2020, 531-538.

Mohaddis, M. (2023). Enhancing functional rehabilitation through orthotic interventions for foot and ankle conditions: a narrative review. Cureus. https://doi.org/10.7759/cureus.49103

Oud, T. A., Lazzari, E., Gijsbers, H. J., Gobbo, M., Nollet, F., & Brehm, M. A. (2021). Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review. PLOS ONE, 16(11). https://doi.org/10.1371/journal.pone.0260271

Pathak, K., Saikia, R., Das, A., Das, D., Islam, M. A., Pramanik, P., Parasar, A., Borthakur, P. P., Sarmah, P., Saikia, M., & Borthakur, B. (2023). 3D printing in Biomedicine: Advancing Personalized Care through additive manufacturing. Exploration of Medicine, 1135–1167. https://doi.org/10.37349/emed.2023.00200

Poier, P. H., Arce, R. P., Rosenmann, G. C., Carvalho, M. G., Ulbricht, L., & Foggiatto, J. A. (2021). Development of modular wrist, hand and finger orthesis by additive manufacturing. Research, Society and Development, 10(15). https://doi.org/10.33448/rsd-v10i15.22707

Poier, P. H., Weigert, M. C., Rosenmann, G. C., de Carvalho, M. G., Ulbricht, L., & Foggiatto, J. A. (2021). The development of low-cost wrist, hand, and finger orthosis for children with cerebral palsy using additive manufacturing. Research on Biomedical Engineering, 37(3), 445–453. https://doi.org/10.1007/s42600-021-00157-0

Silva, R., Silva, B., Fernandes, C., Morouço, P., Alves, N., & Veloso, A. (2024). A Review on 3D Scanners Studies for Producing Customized Orthoses. Sensors, 24(5), 1373.

Smith, T. O., Drew, B. T., Meek, T. H., & Clark, A. B. (2015). Knee orthoses for treating patellofemoral pain syndrome. Cochrane Database of Systematic Reviews, 2015(12). https://doi.org/10.1002/14651858.cd010513.pub2

Steck, P., Scherb, D., Witzgall, C., Miehling, J., & Wartzack, S. (2023). Design and additive manufacturing of a passive ankle–foot orthosis incorporating material characterization for fiber-reinforced PETG-CF15. Materials, 16(9), 3503. https://doi.org/10.3390/ma16093503

Tserovski, S., Georgieva, S., Simeonov, R., Bigdeli, A., Röttinger, H., & Kinov, P. (2019). Advantages and disadvantages of 3D printing for pre-operative planning of Revision Hip Surgery. Journal of Surgical Case Reports, 2019(7). https://doi.org/10.1093/jscr/rjz214