The visual research of changes in the geometry of a rivet joint for material model effect for simulation riveted joints made of EN AW 5251
PDF

Keywords

blind rivet, numerical analysis, nonlinearity, deformation

How to Cite

Lubas, M. (2022). The visual research of changes in the geometry of a rivet joint for material model effect for simulation riveted joints made of EN AW 5251. Technologia I Automatyzacja Montażu (Assembly Techniques and Technologies), 118(4), 54-64. https://doi.org/10.7862/tiam.2022.4.6

Abstract

The paper presents the results of a numerical analysis of a single-lap joint with a blind rivet and its geometrical verification by inside views from the experiment. The research aimed to determine how the results of numerical analyses (FEM) were influenced by the method of modeling the material model and how it relates to the experimental results. As part of the analyses, a discrete riveted model and material model: linear and nonlinear were constructed. The analyses took into account various load cases (500, 800, and 900 N) to better illustrate the relationship between the numerical and experimental results. A new methodology of visualizing changes in a riveted joint's geometry was used to validate the results. The technology of making riveted joint cross-sections was developed during a static tensile test. Samples of a single lap joint with blind rivets made of aluminum sheets were subjected to a shear load. Deformations were "frozen" during the test, and sections were prepared. The microscope photos allowed for the development of a method for visualizing the deformation of the hole and rivet. The numerical results (for various loads and various material configurations) were compared with the experimental results of geometric parameters (i.e. angles between sheets or other dimensions) on the riveted joint cross-sections. The obtained results help to understand the mechanism of failure of the blind rivet under load and the complex state of loads in various stages of deformation.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.7862/tiam.2022.4.6
PDF

References

Armentani E., Greco A., De Luca A., Sepe R. 2020. „Probabilistic Analysis of Fatigue Behavior of Single Lap Riveted Joints”. Appl. Sci. 10, 3379.

Armentani E., Laiso M., Caputo F., Sepe R. 2018. „Numerical FEM Evaluation for the Structural Behaviour of a Hybrid (bonded/bolted) Single-lap Composite Joint”. Procedia Struct. Integr. 8: 137–153.

Atzeni E., Ippolito R., Settineri L. 2009. „Experimental and numerical appraisal of self-piercing riveting”. CIRP Annals – Manufacturing Technology 58: 17–20.

Bednarz A. 2020. „Evaluation of Material Data to the Numerical Strain-Life Analysis of the Compressor Blade Subjected to Resonance Vibrations”. Advances in Science and Technology Research Journal 14, 1.

Bednarz A. 2020. „Influence of the Amplitude of Resonance Vibrations on Fatigue Life of a Compressor Blade with Simulated FOD Damage”. Advances in Science and Technology Research Journal 14,3.

Bednarz A., Misiolek W. 2020. „Assessment of the Impact of Shot-Peening on the Fatigue Life of a Compressor Blade Subjected to Resonance Vibrations”. Materials 12, 5726.

Bednarz A., Misiolek W. 2021. „Numerical and Experimental Assessment of the Effect of Residual Stresses on the Fatigue Strength of an Aircraft Blade”. Materials 14, 5279.

BN-89, 6376-02; “Tworzywa Sztuczne; Żywice epoksydowe ; Epidian 1, 2, 3, 4, 5, 6”.

Bula K., Sterzyński T., Piasecka M., Różański L. 2020. „Deformation Mechanism in Mechanically Coupled Polymer– Metal Hy-brid Joints”. Materials 13, 2512.

Choi D.-H., Han D.-W., Kim H.-K. 2017. „Fatigue life estimation of self-piercing riveted aluminum joints under mixed-mode loading”. Int. J. Fatigue 97: 20–28.

Elzaroug M., Kadioglu F., Demiral M., Saad D. 2018. „Experimental and numerical investigation into strength of bolted, bonded and hybrid single lap joints: Effects of adherend material type and thickness”. Int. J. Adhes. Adhes. 87: 130–141.

Han L., Chrysanthou A., Young K. 2007. „Mechanical behaviour of self-piercing riveted multi-layer joints under different specimen configurations”. Materials and Design 28: 2024–2033.

Han L., Young K.W., Chrysanthou A., Sullivan J.M. 2006. „The effect of pre-straining on the mechanical behaviour of self-piercing riveted aluminium alloy sheets”. Materials and Design 27: 1108–1113.

Haque R., Durandet Y. 2016. „Strength prediction of selfpierce riveted joint in cross-tension and lap-shear”. Materials and Design 108: 666–678.

Hoang N., Porcaro R., Langseth M., Hanssen A. 2010. „Self-piercing riveting connections using aluminium rivets”. International Journal of Solids and Structures 47: 427–439.

Huang L., Guo H., Shi Y., Huang S., Su X. 2017. „Fatigue behavior and modeling of self-piercing riveted joints in aluminum alloy 6111”. International Journal of Fatigue 100: 274–284.

International Organization for Standardization. 2013. „ISO 12996:2013–Mechanical Joining–Destructive Testing of Joints–Specimen Dimensions and Test Procedure for Tensile Shear Testing of Single Joints”. International Organization for Standardization: Geneva, Switzerland.

Jiang H., Luo T., Li G., Zhang X., Cui J. 2017. „Fatigue life assessment of electromagnetic riveted carbon fiber reinforce plastic/aluminum alloy lap joints using Weibull distribution”. International Journal of Fatigue 105: 180–189.

Jiang H.’ Sun L., Liang J., Li G., Cui J. 2019. „Shear failure behavior of CFRP/Al and steel/Al electromagnetic self-piercing riveted joints subject to high-speed loading”. Composite Structures 230, 111500.

Li D., Han L., Thornton M., Shergold M. 2012. „Influence of edge distance on quality and static behaviour of self-piercing riveted aluminium joints”. Materials and Design 43: 22–31.

Li D., Han L., Thornton M., Shergold M., Williams G. 2014. „The influence of fatigue on the stiffness and remaining static strength of self-piercing riveted aluminium joints”. Materials and Design 54: 301–314.

Liang J., Jiang H., Zhang J., Wu X., Zhang X., Li G., Cui J. 2019. „Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052”. Archives of civil and mechanical engineering 19: 240–250.

Lubas M., Bednarz A. 2021. „Material Model Effect for Simulating a Single-Lap Joint with a Blind Rivet”. Materials 14, 7236.

Lubas M., Witek L. 2021. „Influence of Hole Chamfer Size on Strength of Blind Riveted Joints”. Adv. Sci. Technol. Res. J. 15(2):49–56.

Moraes J., Jordon J., Su X., Barkey M., Jiang C., Ilieva E. 2018. „Effect of process deformation history on mechanical performance of AM60B to AA6082 self-pierce riveted joints”. Eng. Fract. Mech. 209: 92–104.

Mucha J. 2017. „Blind Rivet and Plastically Formed Joints Strength Analysis”. Acta Mechanica Slovaca 21 (1): 62-69.

Mucha J., Witkowski W. 2011. „Nośność wybranych rozwiązań połączeń nitowych podczas próby ścinania i rozciągania”. Zeszyty Naukowe Politechniki Rzeszowskiej 279, 83 (4/11).

Mucha J., Witkowski W. 2017. „Analiza wpływu obciążenia termomechanicznego na wytrzymałość połączenia z nitem zrywalnym”. Mechanik 2, 35.

Mucha J., Witkowski W. 2017. „The experimental analysis of the double joint type change effect on the joint destruction process in uniaxial shearing test”. Thin-Walled Structures 66: 39–49.

Pitta S., Roure F., Crespo D., Rojas J.I. 2019. „An Experimental and Numerical Study of Repairs on Composite Substrates with Composite and Aluminum Doublers Using Riveted, Bonded, and Hybrid Joints”. Materials 12, 2978.

Polish Committee for Standardization. PN-EN 485- 2+A1:2018-12. 2018. „Aluminium and Aluminium Alloys–Sheet, Strip and Plate–Part 2: Mechanical Properties”. Polish Committee for Standardization: Warsaw, Poland.

Polish Committee for Standardization. PN-EN 573- 3:2019-12. 2019. „Aluminium and Aluminium Alloys– Chemical Composition and Form of Wrought Products– Part 3: Chemical Composition and Form of Products”. Polish Committee for Standardization: Warsaw, Poland.

Qasim B., Khidir T. 2021. „Study Strength of Blind Riveted Lap Joint Structure under Tensile Shear Force”. International Journal of Mechanical Engineering and Robotics Research 10, 7.

Rao H.M., Kang J., Huff G., Avery K. 2019. „Structural Stress Method to Evaluate Fatigue Properties of Similar and Dissimilar Self-Piercing Riveted Joints”. Metals 9, 359.

Rudawska A., Warda T., Miłosz P. 2015. „Wytrzymałość połączeń klejowych i nitowych”. Technologia i Automatyzacja Montażu 2: 56-59.

Skorupa M., Korbel A., Machniewicz T. 2009. „Analiza wtórnego zginania w mimośrodowych połączeniach nitowych”. Biuletyn WAT 8, 2.

Sun X., Stephens E., Khaleel M. 2007. „Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals”. International Journal of Fatigue 29: 370–386.