Abstract
Most of the current electric cars are derived from recreational vehicles; hence, there is a necessity to develop passive safety systems that meet the current traffic requirements. This paper presents passive safety issues and the results of the real model studies.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
References
ECE standards and regulations: FMVSS 216 (USA), (Roof strength), FMVSS 301 (USA) (Rear impact)
Ibrahim, H. K. 2009. Design optimization of vehicle structures for crashworthiness improvement. Depart¬ment of Mechanical and Industrial Engineering, Con¬cordia University.
Khattab, A., El Rahman A. 2011. Investigation of an adaptable crash energy management system to en¬hance vehicle crashworthiness. Doctoral dissertation, Concordia University.
Koora, R., Suman R., S. A. P. 2014.“Quadri Design Optimization of Crush Beams of SUV Chassis for Cra-shworthiness”. International Journal of Science and Research (IJSR): 327–332.
Kopczyński A., Rusiński E. 2010. Bezpieczeństwo bierne. Pochłanianie energii przez profile cienko-ścienne. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
PLUS-MOBY. Project papers.
UE directives: 96/27/EC, 98/79/EC, ECE R 32 (Colli¬sion Structure Performance - Rear-end.), ECE R 33 (Uderzenie czołowe w sztywną barierę), ECE R 42 (Zderzaki), ECE R 94 (Offset frontal impact), ECE R 95 (Occupant Protection in Lateral Collisions),
https://en.wikipedia.org/wiki/Advanced_driver-as¬sistance_systems - cite_note-6 (2.12.2019)