Morphology of synthetic jet
PDF

Keywords

synthetic jet
vortex ring
morphology
vortex generation
coherent structure

How to Cite

Gil, P. (1). Morphology of synthetic jet. Advances in Mechanical and Materials Engineering, 34(295 (2), 183-191. https://doi.org/10.7862/rm.2017.15

Abstract

Synthetic jet devices consist of an oscillating driver, a cavity, and a small opening such as a circular, square or rectangular orifice. When the driver is oscillating, it produces a series of vortex rings at the orifice. The device generates the zero net mass flux (ZNMF) because the identical fluid mass and the mass flow are sucked and flowed out across the orifice. Although there is no net mass transfer to its surroundings, the ZNMF device has the interesting property of causing a finite amount of momentum transfer to its surroundings. The experimental result of synthetic jet flow visualization is presented in this paper. Synthetic jet visualization is carried out using smoke visualization with light sheet. Five qualitatively different flow field regimes were identified, depending upon the Reynolds and Stokes number. Vortex ring generation and propagation are also presented and analyzed in this paper.

https://doi.org/10.7862/rm.2017.15
PDF

References

1. Cater J.E., Soria J.: The evolution of round zero-net-mass-flux jets, J. Fluid Mech. 472 (2002), 167-200.
2. Dauphinee T.M.: Acoustic air pump, Rev. Sci. Instrum. 28 (6) (1957), 456.
3. Didden N.: On the formation of vortex rings: rolling-up and production of circulation, ZAMP, 30 (1979) 101-116.
4. Gharib M., Rambod E., Shariff K.: A universal time scale for vortex ring formation, J. Fluid Mech., 360 (1998), 121-140.
5. Gil P., Smusz R., Strzelczyk P.: Badania eksperymentalne wymiany ciepła przy wykorzystaniu strugi syntetycznej. Termodynamika i wymiana ciepła w badaniach procesów cieplno-przepływowych. OW PRz, Rzeszów 2014, ss. 187-198.
6. Gil P., Strzelczyk P.: Performance and efficiency of loudspeaker driven synthetic jet actuator, Exp. Therm. Fluid Sci., 76 (2016), 163-174.
7. Gil P., Strzelczyk P.: Porównanie właściwości chłodzących strugi syntetycznej i strugi swobodnej, ZN PRz Mechanika 87 (2015), 105-117.
8. Gil P.: Przejście strugi syntetycznej w strugę turbulentną, ZN PRz Mechanika, 88 (2016), 37-46.
9. Glezer A.: The formation of vortex rings, Phys. Fluids, 31 (1988), 3532-3542.
10. Holman R., Utturkar Y., Mittal R., Smith B.L, Cattafesta L.: Formation criterion for synthetic jets, AIAA J., 43 (2005), 2110-2117.
11. Ingard U., Labate S.: Acoustic circulation effects and the nonlinear impedance of orifices, J. Acoust. Soc. Am. 22 (1950), 211-218.
12. Jain M., Puranik B., Agrawal A.: A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow, Sens. Actuators, A 165 (2011) 351-366.
13. James R.D., Jacobs J.W., Glezer A.: A round turbulent jet produced by an oscillating diaphragm, Phys. Fluids, 8 (1996), 2484-2495.
14. Li Y., Bai H., Gao N.: Drag of a D-shaped bluff body under small amplitude harmonic actuation, Theor. Appl. Mech. Letters, 5 (2015) 35-38.
15. Mallinson S.G., Reizes J.A., Hong G.: An experimental and numerical study of synthetic jet flow, Aeronaut. J., 105 (2001) 41-49.
16. McGuinn A., Farrelly R., Persoons T., Murray D. B.: Flow regime characterization of an impinging axisymmetric synthetic jet, Exp. Therm. Fluid Sci., 47 (2013), 241-251.
17. Pack L.G., Seifert A.: Periodic excitation for jet vectoring and enhanced spreading, J. Aircraft, 38 (2001) 486-495.
18. Shuster J.M., Smith D.R.: Experimental study of the formation and scaling of a round synthetic jet, Phys. Fluids, 19 (2007) 045109.
19. Strzelczyk P.: Tunel aerodynamiczny do badania śmigieł, J. Aeronautica Integra, 1 (2006) 69-72.
20. Travnicek Z., Broucková Z., Kordík J.: Formation criterion for axisymmetric synthetic jets at high Stokes numbers. AIAA J., 50 (2012) 2012-2017.