Stress analysis of the single adhesive lap joints with plastic deformation of connected materials
PDF

Keywords

single adhesive lap joint
stress analysis
finite element method
plastic strain

How to Cite

Zielecki, K., Witek, L., & Stachowicz, F. (1). Stress analysis of the single adhesive lap joints with plastic deformation of connected materials. Advances in Mechanical and Materials Engineering, 34(295 (2), 261-270. https://doi.org/10.7862/rm.2017.22

Abstract

In this work the results of numerical stress analysis of single adhesive lap joints were presented. In the analysis both the linear-elastic and the elastic-plastic models of adherends materials were considered. Plastic deformation of adherends has a significant influence on the stress state in the adhesive layer. In the first part of the work the mechanical properties of adherends material obtained in experimental investigations were presented. In next part of the study the numerical model of joint was presented. The results of static analysis using the finite element method showed that in the case of joining materials with low value of yield stress the plastic deformation occurs in adherend at load much smaller than destructive force of the joint. In this kind of joints the plastic deformation of adherend has an influence on rapid stress increase in adhesive layer, in final stage of loading. This phenomenon causes a decrease of load capacity of single adhesive lap joints of elastic-plastic materials.

https://doi.org/10.7862/rm.2017.22
PDF

References

1. Biruk-Urban K., Kuczmaszewski J.: Modyfikacja klejów epoksydowych w aspekcie ich właściwości cieplnych, Technologia Automatyzacja Montażu, 2 (2013) 31-34.
2. Petrie E.M.: Handbook of Adhesives and Sealants, McGraw - Hill Professional, New York, 2006.
3. Habenicht G.: Kleben erfolgreich und fehlerfrei: Handwerk, Praktiker, Ausbildung, Industrie, Wiesbaden, Vieweg+Teubner, 2008.
4. Habenicht G.: Kleben - Grundlagen, Technologien, Anwendungen, Berlin, Springer 2008.
5. Pocius. A.V.: Adhesion and Adhesives Technology: An Introduction, Cincinnati Carl Hanser Verlag GmbH Co KG, 2012.
6. Verein Deutscher Ingenieure: VDI 2229 Metallkleben, Metallkleben Hinweise für die Konstruktion und Fertigung, VDI-Gesellschaft für Konstruktion und Entwicklung, 1979.
7. Kuczmaszewski J.: Fundamentals of metal-metal adhesive joint design, Lublin University of Technology, Polish Academy of Sciences, 2006.
8. Yana Z.M., Youa M., Yib X.Y., Zhenga X.L. , Lia Z.: A numerical study of para-
llel slot in adherend on the stress distribution in adhesively bonded aluminum
single lap joint, Int. J. Adhesion Adhesives, 27 (2007) 687-695.
9. Pires I., Quintino L., Durodola J.F., Beevers A.: Performance of bi-adhesive bonded aluminium lap joints, International Journal of Adhesion & Adhesives 23 (2003) 215-223.
10. Godzimirski J., Rośkowicz M., Tkaczuk S.: Wytrzymałość połączeń klejowych, WAT, Warszawa 2010.
11. Hua Y., Gu L., Trogdon M.: Three-dimensional modeling of carbon/epoxy to titanium single-lap joints with variable adhesive recess length, Int. J. Adhesion Adhesives, 38 (2012) 25-30.
12. Xiaocong H.: A review of finite element analysis of adhesively bonded joints, Int. J. Adhesion Adhesives, 31 (2011) 248-264.
13. Zielecki K., Witek L.: Influence of young modulus of connected materials on ultimate strength of beveled adhesive joints, Proc. Int. Conf. Advances in Micromechanics of Materials, Rzeszów 2014.
14. Zielecki K., Witek L.: Analysis of stress and ultimate strength of modified single adhesive lap joints, Logistyka, 4 (2015) 7015-7021.
15. ABAQUS Users Manual, Abaqus Inc., 2009.
16. http://www.salzgitterstahlhandel.pl/pl/produkty/gatunki_normy/gatunki_ EN10025.