Evaluation of friction coefficient of an auto-body steel sheet
PDF

Keywords

coefficient of friction
friction
strip-drawing test
surface roughness

How to Cite

Trzepieciński, T., Kubit, A., Fejkiel, R., & Bochnowski, W. (2016). Evaluation of friction coefficient of an auto-body steel sheet. Advances in Mechanical and Materials Engineering, 33(293 (3), 247-258. https://doi.org/10.7862/rm.2016.20

Abstract

In this paper the results of strip drawing tests aimed to determine the friction coefficient in sheet metal forming operations are presented. The tests were conducted using a specially designed tribological simulator. The deep drawing quality steel sheet used in the automotive industry was tested. The relationship that shows the effect of sheet normal load, tool surface roughness, lubrication conditions and sample orientation according the rolling direction of the sheet on the value of friction coefficient are presented and discussed. The Scanning Electron Microscope (SEM) micrographs of sheet surfaces after the friction test allowed us to identify the mechanisms that occur at the contact of two bodies with rough surfaces. The results of the tests indicate that the relationship between friction force and normal force is nonlinear. Thus, the value of the friction coefficient is changed with the change of the load value.

https://doi.org/10.7862/rm.2016.20
PDF

References

1. Fratini L., Lo Casto S., Lo Valvo E.: A technical note on an experimental device to measure friction coefficient in sheet metal forming, J. Mat. Proc. Technol., 172 (2006) 16-21.
2. Trzepieciński T., Bazan A., Lemu H.G.: Frictional characteristics of steel sheets used in automotive industry, Inte. J. Automot. Techn., 16 (2015) 849-863.
3. Gierzyńska M.: Tarcie, zużycie i smarowanie w obróbce plastycznej metali, WNT, Warszawa 1983.
4. Trzepieciński T.: Badanie właściwości tarciowych blach stalowych dla przemysłu motoryzacyjnego, Hutnik, 81 (2014) 446-449.
5. Wang W., Zhao Y., Wang Z., Hua M., Wei X.: A study on variable friction model in sheet metal forming with advanced high strength steels, Tribology Int., 93 (2016) 17-28.
6. Kirkhorn L., Bushlya V., Anderson M., Ståhl J-E.: The influence of tool steel microstructure on friction in sheet metal forming, Wear, 302 (2013) 1268-1278.
7. Neale M.J.: The tribology handbook. Second edition, Butterworth Heinemann, Oxford 2001.
8. Tamai Y., Inazumi T., Manabe K.: FE forming analysis with nonlinear friction coefficient model considering contact pressure, sliding velocity and sliding length, J. Mat. Proc. Technol., 227 (2016) 161-168.
9. Wilson W.: Friction models for metal forming in the boundary lubrication regime, ASME, 10 (1988) 13-23.
10. Hol J., Cid Alfaro M.V., de Rooij M.B., Meinders T.: Advanced friction modeling for sheet metal forming, Wear, 286-287 (2012) 66-78.
11. Wasteneng J.D.: Modeling of contact and friction in deep drawing processes, Ph.D. Thesis, University of Twente, 2001.
12. Hol J., Meinders V.T., Geijselaers H.J.M., van den Boogaard A.H.: Multi-scale friction modeling for sheet metal forming: The mixed lubrication regime, Tribology Int., 85 (2015) 10-25.
13. Ma B., Tieu A.K., Lu C., Jiang Z.: A finite-element simulation of asperity flatten-ing in metal forming, J. Mat. Proc. Technol., 130 (2002) 450-455.
14. Lee B.H., Keum Y.T., Wagoner R.H.: Modeling of the friction caused by lubrication and surface roughness in sheet metal forming, J. Mat. Proc. Technol., 130-131 (2002) 60-63.
15. Kirkhorn L., Frogner K., Andersson M., Ståhl J.E.: Improved tribotesting for sheet metal forming, Procedia CIRP, 3 (2012) 507-512.
16. Trzepieciński T., Lemu H.G.: Study on frictional conditions of AA5251 aluminium alloy sheets using drawbead simulator test and numerical methods, Stroj-niski Vestnik - J. Mech. Eng., 60 (2014) 51-60.
17. Lemu H.G., Trzepieciński T.: Numerical and experimental study of the frictional behaviour in bending under tension test, Strojniski Vestnik - J. Mech. Eng., 59 (2013) 41-49.
18. Andreasen J.L., Bay N., Andersen M., Christensen E., Bjerrum N.: Screening the performance of lubricants for the ironing of stainless steel with a strip reduction test, Wear, 207 (1997)1-5.
19. van der Heide E., Huis in 't Veld A.J., Schipper D.J.: The effect of lubricant selection on galling in a model wear test, Wear, 251 (2001) 973-979.
20. Tisza M., Fülöp T., A general overview of tribology of sheet metal forming, J. Technol. Plasticity, 26 (2001) 11-25.
21. Wiklund D., Rosén B-G., Wihlborg A.: A friction model evaluated with results from a bending-under-tension test, Tribology Int., 42 (2009) 1448-1452.
22. Azushima A., Sakuramoto M.: Effects of plastic strain on surface roughness and coefficient of friction in tension-bending test, CIRP Annals – Manuf. Technol., 55 (2006) 303-306.
23. Wang D., Yang H., Li H.: Advance and trend of friction study in plastic forming, Trans. Nonferrous Metals Soc. China, 24 (2014) 1463-1272.
24. Wang D., Li H., Ma J., Li G.: Tribological evaluation of surface modified H13 tool steel in warm forming of Ti-6Al-4V titanium alloy sheet, Chinese J. Aero-nautics, 27 (2014) 1002-1009.