Abstract
The numerical results of 1100-aluminium extrusion tests conducted at a tool ve-locity of 36 km/h are presented. Engineering applications of the considered problem concern the use of this extrusion technology in the design of an impact energy-absorbing device. Viscous and plastic properties of the extruded materials are described on the basis of numerical simulations of a tensile test in which the Bodner-Partom material model is applied. The numerical results are compared with experimental ones.
References
1. Klepaczko J.R., Chiem G.C.Y.: On rate sensitivity of FCC metals, instantaneous rate sensitivity and rate sensitivity of strain hardening, Journal of Mechanics and Physics of Solids, vol. 34, 1986, pp. 29-54.
2. Malinowski J., Kowalewski Z., Kruszka L.: Doświadczalna metoda oraz badania plastycznego płynięcia metali w zakresie bardzo wysokich prędkości odkształcenia, IFTR Reports IPPT PAN, vol.10, 2007, pp. 1-88.
3. Bodner S.R., Partom Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials, Journal of Applied Mechanics, vol. 42, 1975, pp. 385-389.
4. Zerilli F.J., Armstrong R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol. 61, 1987, pp. 1816-1825.
5. Johnson G.R., Cook W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: 7th Int. Symposium on Ballistics, Hague, 1983, pp. 541-547.
6. Skrzat A.: Fuzzy logic application to stress-strain analysis in selected elastic-plastic material models, Archives of Metallurgy and Materials, vol. 56, 2011, pp.559-568.
7. Huang S., Khan A.S.: Modelling the mechanical behaviour of 1100-0 aluminium at different strain rates by the Bodner-Partom model, International Journal of Plastic-ity, vol. 8, 1992 pp. 501-517.
8. http://www.simufact.com/simufact-products.html
2. Malinowski J., Kowalewski Z., Kruszka L.: Doświadczalna metoda oraz badania plastycznego płynięcia metali w zakresie bardzo wysokich prędkości odkształcenia, IFTR Reports IPPT PAN, vol.10, 2007, pp. 1-88.
3. Bodner S.R., Partom Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials, Journal of Applied Mechanics, vol. 42, 1975, pp. 385-389.
4. Zerilli F.J., Armstrong R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol. 61, 1987, pp. 1816-1825.
5. Johnson G.R., Cook W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: 7th Int. Symposium on Ballistics, Hague, 1983, pp. 541-547.
6. Skrzat A.: Fuzzy logic application to stress-strain analysis in selected elastic-plastic material models, Archives of Metallurgy and Materials, vol. 56, 2011, pp.559-568.
7. Huang S., Khan A.S.: Modelling the mechanical behaviour of 1100-0 aluminium at different strain rates by the Bodner-Partom model, International Journal of Plastic-ity, vol. 8, 1992 pp. 501-517.
8. http://www.simufact.com/simufact-products.html