Abstract
In this paper, the effect of sheet pre-deformation on the change of the surface roughness parameters and friction coefficient value is investigated. For this purpose, strips of AISI 430 ferritic stainless steel with deep drawing quality (DDQ), measuring 0.8 × 25 × 500 mm, were pre-deformed using a uniaxial tensile test for five different true strain values. The correlation between the surface roughness parameters and hardness with the frictional conditions of the tested strips was investigated in the bending under tension test. The results revealed that the friction coefficient determined for all pre-deformed strips increased as the level of true strain also increased. An increase in the plastic deformation of sheets under the uniaxial tensile stress state causes a nearly linear increase in the value of basic amplitude parameters of surface roughness, however, the hardness tended to present a constant increase for deformations close to uniform elongation. Furthermore, scratches and severe wear occurred on the surface of the strips and intensified with increasing roughness.
References
Aksoy, M., Kuzucu, V., & Korkut, M. H. (1999) The effect of niobium and homogenization on the wear resistance and some mechanical properties of ferritic stainless steel containing 17–18 wt.% chromium. Journal of Materials Processing Technology, 91(1-3), 172-177. https://doi.org/10.1016/S0924-0136(98)00446-4
American Society for Testing and Materials. (2021). Standard test methods for tension testing of metallic materials (ASTM Standard No. E8/E8M-22). https://www.astm.org/e0008_e0008m-22.html
American Society for Testing and Materials. (2022). Standard specification for general requirements for flat-rolled stainless and heat-resisting steel plate, sheet, and strip (ASTM Standard No. A480/A480M-22). https://www.astm.org/a0480_a0480m-22.html
Arinbjarnar, Ú., & Nielsen, C. V. (2023). Effect of workpiece pre-straining on tribological performance of surface coatings in sheet metal forming. Tribology International, 180, Article 108262. https://doi.org/10.1016/j.triboint.2023.108262
Blau, P. J. (2005). On the nature of running-in. Tribology International, 38(11-12), 1007-1012. https://doi.org/10.1016/j.triboint.2005
Darendeliler, H., Akkö, M., & Yüesoy, C. A. (2002). Effect of variable friction coefficient on sheet metal drawing. Tribology International, 35, 97-104. https://doi.org/10.1016/S0301-679X(01)00099-8
Faria, G. S., Labiapari, W. S., & Brandao, L. P. (2024). Behavior of AISI 430 ferritic steel in relation to AISI 304 austenitic steel subjected to different lubrication conditions. Revista Matéria, 29(3), Article e20240121. https://doi.org/10.1590/1517-7076-RMAT-2024-0121
Gordon, W. & van Bennekom, A. (1996). Review and stabilisation of ferritic stainless steel. Materials Science and Technology, 12(2), 126-131. https://doi.org/10.1179/026708396790165579
International Organization for Standardization (2021). Geometrical product specifications (GPS) — Surface texture: Profile — Part 2: Terms, definitions and surface texture parameters (ISO Standard No. 21920-2). https://www.iso.org/standard/72226.html
Inya, N. A., Etim, D. N., Uchenna, A. J., & Chukwudi, A.P. (2023). Recent findings on corrosion of ferritic stainless steel weldments: A review. Zastita Materijala, 64(4), 372–382. https://doi.org/10.5937/zasmat2304372N
Khonsari, M. M., Ghatrehsamani, S., & Akbarzadeh, S. (2021). On the running-in nature of metallic tribo-components: A review. Wear, 474-475, 203871. https://doi.org/10.1016/j.wear.2021.203871
Kragelsky, I. V. & Kombalov, V. S. (1969). Calculation of value of stable roughness after running-in (elastic contact). Wear, 14(2), 137-140. https://doi.org/10.1016/0043-1648(69)90344-5
Littlewood, M. & Wallace, J. F. (1964). The effect of surface finish and lubrication on the fictional variation involved in the sheet-metal-forming process. Sheet Metal Industries, 41, 925-930.
Longhai Special Steel. (2025). ABNT VND. Retrieved January 11, 2025, from: https://steelss.com/materials/Special-Steel/VND_45_6650.html
Luiz, V. D., & Rodrigues, P. C. M. (2021). Effect of the test conditions on tribological behavior of an Nb‑stabilized AISI 430 stainless steel sheet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, Article 505. https://doi.org/10.1007/s40430-021-03235-7
Luiz, V. D., & Rodrigues, P. C. M. (2022). Failure analysis of AISI 430 stainless steel sheet under stretching and bending conditions. International Journal of Advanced Manufacturing Technology, 121, 2759-2772. https://doi.org/10.1007/s00170-022-09451-2
Luiz, V. D., Santos, A. J., Câmara, M. A., & Rodrigues, P. C. M. (2023). Influence of different contact conditions on friction properties of AISI 430 steel sheet with deep drawing quality. Coatings, 13(4), Article 771. https://doi.org/10.3390/coatings13040771
Masters, I. G.; Williams, D. K., & Roy, R. (2013). Friction behaviour in strip draw test of pre-stretched high strength automotive aluminium alloys. International Journal of Machine Tools & Manufacture, 73, 17-24. https://doi.org/10.1016/j.ijmachtools.2013.05.002
Oliveira, E. S., Damasceno, J. R., Neto, A. S., Amaral, E. C., Gonçalves, K. A. M. B., & Luiz, V. D. (2024). The effect of the drawing die radius in the bending under tension test on the frictional behaviour of AISI 430 steel and AW-1100 aluminium alloy sheets. Advances in Mechanical and Materials Engineering, 41(1), 183-193. https://doi.org/10.7862/rm.2024.16
Shin, H. J., An, J. K., Park, S. H., & Lee, D.N. (2003) The effect of texture on ridging of ferritic stainless steel. Acta Materialia, 51(16), 4693-4706. https://doi.org/10.1016/S1359-6454(03)00187-3
Sulonen, M., Eskola, P., Kumpulainen, J., & Ranta-Eskola, A.A. (1981). Reliable method for measuring the friction coefficient in sheet metal forming. IDDRG Working Group Meetings, Paper WG, III/4, Tokyo.
Swift, H.W. (1948). Plastic bending under tension. Engineering, 166, 333-359.
Tanure. L. P. A. R., Alcântara, C. M., Oliveira, T. R., Santos, D. B., Gonzalez, & B. M. (2017). Microstructure, texture and microhardness Evolution during annealing heat treatment and mechanical behavior of the niobium-stabilized ferritic stainless steel ASTM 430 and niobium-titanium-stabilized ferritic stainless steel ASTM 439: a comparative study. Materials Research, 20(6), 1650-1657. https://doi.org/10.1590/1980-5373-MR-2017-0568
Trzepieciński, T. (2019). Effect of lubrication on friction in bending under tension test-experimental and numerical approach. Metals, 9, Article 988. https://doi.org/10.3390/met9090988
Trzepieciński, T., & Lemu, H. G. (2020a). Effect of lubrication on friction in bending under tension test-experimental and numerical approach. Metals, 10(4), Article 544. https://doi.org/10.3390/met10040544
Trzepieciński, T., & Lemu H. G. (2020b). Recent developments and trends in the friction testing for conventional sheet metal forming and incremental sheet forming. Metals, 10, Article 47. https://doi.org/10.3390/met10010047
Trzepieciński. T. & Fejkiel, R. (2017). On the influence of deformation of deep drawing quality steel sheet on surface topography and friction. Tribology International, 115, 78-88. https://doi.org/10.1016/j.triboint.2017.05.007
Turkoglu, T. & Ay, I. (2021). Investigation of mechanical, kinetic and corrosion properties of borided AISI 304, AISI 420 and AISI 430. Surface Engineering, 37(8), 1020-1031. https://doi.org/10.1080/02670844.2021.18843
Wenzloff, G. J., Hylton, T. A., & Matlock, D. K. (1992). Technical note: A new test procedure for the bending under tension friction test. Journal of Materials Engineering and Performance, 1, 609–613. https://doi.org/10.1007/BF02649242