Influence Fixing Mannor for Circular Perforated Plates on Stress Concentration Hydrostatic Pressures
PDF (Język Polski)

Keywords

circular plate
perforated plate
simply supported
fixed
equivalent stress
numerical calculation

How to Cite

Konieczny, M., & Gasiak, G. (2019). Influence Fixing Mannor for Circular Perforated Plates on Stress Concentration Hydrostatic Pressures. Advances in Mechanical and Materials Engineering, 36(1-2), 41-52. https://doi.org/10.7862/rm.2019.04

Abstract

The paper presents the influence of boundary conditions on the location of stress concentration zones and theirs values employing a circular axisymmetric perforated plate, simply supported and fixed and loaded with hydrostatic pressure. The finite element method offered by the Femap software was used for numerical calculations. The test plate with diameter D = 300 mm had ten holes. On the first inner measuring circle, the plate had openings with diameter d1 = 3,5 mm and holes on the tenth outside circle with diameter d10 = 20,5 mm. The results of numerical calculations for a plate with simply supported were compared with the results obtained for the fixed plate. In the case of a simply supported plate, the maximum stress concentration occurred in zone 7 and was represented by value of σeq max = 182,30 MPa. In the case of plate with bounded edges, the maximum value of stress occurred in zone 1 and was equal to σeq max = 71,40 MPa.

https://doi.org/10.7862/rm.2019.04
PDF (Język Polski)

References

Chudzik A., Świnarski J.: Effect of changes in the thickness of a perforated plate of the heat exchanger on its structural stability, J. Theor. Appl. Mech., 42 (2004) 325-334.

Achtelik H., Gasiak G., Grzelak J.: Strength tests of axially symmetric perforated plates for chemical reactors: Part 1 – The simulation of stress state, Int. J. Pressure Vessels Piping, 85 (2008) 248-256.

Achtelik H., Gasiak G., Grzelak J.: Strength tests of axially symmetric perforated plates for chemical reactors: Part 2 – Experiments, Int. J. Pressure Vessels Piping, 85 (2008) 257-264.

Achtelik H., Gasiak G., Grzelak J.: Wytężenie i nośność płyt perforowanych obciążonych osiowosymetrycznie, Studia i Monografie, z. 171, OW PO, Opole 2005.

Achtelik H., Gasiak G., Sojka M.: Topografia trwałości zmęczeniowej kwadratowych płyt perforowanych przy obciążeniach cyklicznych, XXI Symp. Zmęczenie i Mechanika Pękania, Bydgoszcz 2006, ss. 13-21.

Chudzik A., Niezgodziński T.: Badania płyt perforowanych z wtłoczonymi rurkami, XIX Symp. Mechaniki Eksperymentalnej Ciała Stałego, Jachranka 2000, ss. 410-415.

Niezgodziński M.E.: Obliczanie grubości ścian sitowych w zbiornikach ciśnieniowych, Przegląd Mechaniczny, z. 3 (1973) 102-105.

Niezgodziński M.E., Zwoliński W.: Obliczanie den sitowych usztywnionych przez płaszcz zbiornika, Przegląd Mechaniczny, z. 8 (1973) 273-275.

Cepkauskas M., Yang J.: Equivalent properties for perforated plates – an analytical aproach, 18th Int. Conf. on Structural Mechanics in Reactor Technology, Beijing, 2005, pp. 1225-1235.

Meijers P.: Refined theory for bending and torsion of perforated plates. J. Pressure Vessels Technol., 108 (1986) 425-429.

Ledwoń W., Achtelik H.: Experimental analysis of the state of stress of the axisymetric perforated plateds loaded with hydrostatic presure, Proc. 13th Int. Sci. Conf., Wrocław 2016, pp. 331-341.

Marne R.A.: Stress analysis of a perforated plate through experimental and computational methods, Int. Eng. Res. J., 1 (2015) 482-487.

Baaijens F.P.T., Brekelmans W.A.M., Van Rens B.J.E.: Homogenization of the elastoplastic behavior of perforated plates, Computer Structures, 69 (1998) 537-545.

Dharmin P., Khushbu P.: A Review on stress analysis of an infinite plate with cut-outs, Int. J. Sci. Res. Publications, 2 (2012) 2250-3153.

Minguez J.M., Vogvell J.: Plater with holes under laternal load pressure. Eng. Failure Analysis, 4 (1998) 299-315.

Nakayama Y., Kodama A.: FEM analysis on elastic-plastic deformation of perforated sheets, Metals Mater., 4 (1998) 319-321.

Purba R., Bruneau M.: Finite-Element investigation and design recommendations for perforated steel plate shear walls, J. Structural Eng., 11 (2009) 1367-1376.

Shaterzadeh A., Behzad H., Shariyad M.: Stability analysis of composite perforated annular sector plates under thermomechanical loading by finite element method, Int. J. Structural Stability Dynamics, 18 (2010) 18501100.

Wastar S.D., Bharule A.: Stress analysis of finite plate with special shaped cutout,

I. J. Sci. Eng. Res., 3 (2014) 2347-3878.

Al-Hassami T.S., Karami K., Webb D.C.: Use of FEM in performance assessment of perforated plates subject to general loading conditions, J. Presure Vesels Piping, 64 (1995) 137-152.

Andh U., Chavan S., Kulkarni S., Khurd S.: Stress analysis of perforated plates under uniaxial compression using FEA and photoelasticity, Int. Res. J. Eng. Technol., 3 (2016) 239-244.

Gasiak G., Ledwoń W.: Analiza numeryczna stanu naprężenia i ugięcia płyt perforowanych obciążonych siłą skupioną, Górnictwo odkrywkowe, Opole 2014,

ss. 250-253.

Gasiak G., Ledwoń W.: Stan naprężenia i przemieszczenia prostokątnych płyt perforowanych poddanych obciążeniu normalnemu, Konf. Problemy Rozwoju Maszyn Roboczych, Zakopane 2014, ss. 69-70.

Ledwoń W.: Numerical analysis of stress state and sag perforated plates loaded pressure introduction, Logistyka, 4 (2014) 9391-9396.