Abstract
The article presents a literature review and a comparative analysis of criterion numbers important in the description and design of coil heat exchangers - the Dean number and the critical Reynolds number. These numbers take into account the specificity of fluid flow in the coil resulting from winding of the circular section pipe on the cylindrical side. Coil geometry necessary in the description of criterion numbers was also discussed due to the significant influence of geometric parameters on the flow structure. The work analyzes the scope of applicability of appropriate criterion formulas in the description of phenomena related to intensification of heat transfer in the coil heat exchanger resulting from the occurrence of secondary flow, which is the effect of interaction of centrifugal forces, inertia forces and forces caused by fluid viscosity.
References
Boothroyd A.: Spiral Heat exchanger, International Encyclopedia of Heat and Mass Transfer, ed. G. Hewitt, Y. Pulezhaev, CRC Press, N.Y. 1997, p. 1044.
Thomson J.: On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes, Proc. Royal Society of London, 25 (1877) 5-8.
Grindley J.H., Gibson A.H.: On the Frictional Resistance to the flow of Air through a Pipe, Proc. Royal Society of London, London 1908, pp. 114-139.
Williams G.S., C.W. Hubbel, G.H. Fenkell: Experiments at Detroit, Mich., On the effect of curvature upon the flow of water in pipes, Trans. American Society Civil Eng., 47 (1902) 1-196.
Eustice J.: Experiments on streamline motion in curved pipes, Proc. Royal Society of London, Series A, 85 (1911) 114-139.
Eustice J.: Flow of water in curved pipes, Proc. Royal Society of London, Series A, 84 (1910) 107-118.
White C.M.: Streamline flow through curved pipes, Proc. Royal Society of London, Serial A, 123 (1929) 645-663.
Taylor G.I., Yarrow F.R.S.: The criterion for turbulence in curved pipes, Proc. Royal Society of London, Serial A, 124 (1929) 243-249.
Dean W.R.: Note on the motion of fluid in a curved pipe, Phil. Mag., 4 (1927) 208.
Dean W.R.: The stream-line motion of fluid in a curved pipe, Phil. Mag., 5 (1928) 673.
Brewster D.B., Grosberg P., Nissan A.H.: The stability of viscous flow between horizontal concentric cylinders, Proc. Royal Society of London, Series A, 251 (1959) 76-91.
Reid W.H.: On the stability of viscous flow in a curved channel, Proc. Royal Society of London, Series A, Math. Physical Sci., 244 (1958) 186-198.
Mestel J.: Flow in curved pipes: The Dean equations, Lecture Handout for Course M4A33, Imperial College.
McConalogue D.J., Srivastava R.S.: Motion of a fluid in a curved tube, Proc. Royal Society of London, Series A, 307(1968) 37-53.
Van Dyke M.: Extended Stokes Series: Laminar flow through a loosely coiled pipe, J. Fluid Mech., 86 (1978) 129-145.
Yanase S., Goto N., Yamamoto K.: Dual solutions of the flow through a curved tube, Fluid Dyn. Res., 5 (1989) 191-201.
Cieślicki K., Piechna A.: Can the Dean number alone characterize flow similarity in differently bent tubes?, J. Fluids Eng., 134 (2012) 051205.
Md. Mainul Hoque, Md. Mahmud Alam: Effects of Dean number and curvature on fluid flow through a curved pipe with magnetic field, Procedia Eng., 56 (2013) 245-253.
Reynolds O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistances in parallel channels, Phil. Trans. Roy. Soc. London, 174 (1883) 935-982.
Ekman V.W.: On the change from steady to turbulent motion of liquids, Ark. Mat. Astron. Fys., 6 (1911) 1-16.
Schiller L.: Neu Berichte zur Turbulenzentwicklung, Z. Angew. Math. Mech., 14 (1934) 36-42.
Pfenniger W.:Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and flow control, ed. G.V. Lachman, Pergamon, New York 1961, pp. 970-980.
Rotta J.: Experimenteller Beitrag zur Entstehung Turbulenter Stromung im Rohr, Ing-Arch., 24 (1956) 258-281.
Sreenivasan K.R., Strykowski P.J.: Stabilization effects in flow through helically coiled pipes, Experiments Fluids, 1 (1983) 31-36.
Kakac S., Shah R.K., Aung W.: Handbook of Single-Phase Convective Heat Transfer, Wiley-Interscience, Hoboken, NJ, 1987.
Schmidt E.F.: Wärmeübergang und Druckverlust in Rohrschlangen, Z. Technische Chemie, 39 (1967) 781-789.
Webster D.R., Humphrey J.A.C.: Experimental observations of flow instabilities in a helical coil, ASME J. Fluids Eng., 115 (1993) 436-443.
Ito H.: Friction factors for turbulent flow in curved pipes, ASME J. Basic Eng. Trans., 81 (1959) 123-132.
Srinivasan P.S., Nadapurkar S.S., Holland F.A.: Pressure drop and heat transfer in coils, Chemical Eng. J., 218 (1968) 113-119.
Srinivasan P.S., Nadapurkar S.S., Holland F.A.: Friction factors for coils, Trans. Institution Chemical Eng., 48 (1970) T156-T161.
Kalb C.E., Seader J.D.: Entrance region heat transfer in a uniform wall-temperature helical coil with transition from turbulent to laminar flow, Int. J. Heat Mass Transfer, 26 (1983) 23-32.
Schmidt D.F.: Wärmeübergang and Druckverlust in Rohrshlangen, Chemical Eng. Technol., 13 (1967) 781-789.
Kubair V., Varrier C.B.S.: Pressure drop for fluid flow in helical coils, Trans. Indian Inst. Chem. Eng., 14 (1961) 93-97.
Wojtkowiak J., Oleśkowicz-Popiel C.: Współczynnik oporu przepływu dla rury helikoidalnej, Inż. Chemiczna Procesowa, 2 (1995) 273-281.
Mishra P., Gupta S.N.: Momentum transfer in curved pipes 1. Newtonian Fluids; 2. Non-Newtonian Fluids, Industrial Eng. Chemistry Process Design Development, 18 (1979) 130-142.
Cioncolini A., Santini L.: An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes, Exp. Thermal and Fluid Sci., 30 (2006) 367-380.
Cioncolini A., Santini L.: On laminar to turbulent flow transition in adiabatic helically coiled pipe flow, Exp. Thermal Fluid Sci., 30 (2006) 653-661.
Kubair V., Kuloor N.R.: Flow of Newtonian fluids in Archimedean spiral tube coils: Correlation of laminar, transition and turbulent flows, Indian J. Technol., 4 (1966) 3-8.